R, ..., P SICS

N ,	S , .	V ',,
Universal gravitational constant	G	$6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Acceleration due to gravity	g	9.81 m/s ²
Speed of light in a vacuum	ì	$3.00 \times 10^{8} \text{ m/s}$
Speed of sound in air at STP		3.31×10^2 m/s
Mass of Earth		$5.98 \times 10^{24} \mathrm{kg}$
Mass of the Moon		$7.35 imes 10^{22} \mathrm{kg}$
Mean radius of Earth		$6.37 \times 10^6 \text{ m}$
Mean radius of the Moon		$1.74 \times 10^{6} \text{ m}$
Mean distance—Earth to the Moon		$3.84 \times 10^8 \text{ m}$
Mean distance—Earth to the Sun		$1.50 \times 10^{11} \text{ m}$
Electrostatic constant	¢	$8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
1 elementary charge	ż	$1.60 \times 10^{-19} \text{ C}$
1 coulomb (C)		6.25×10^{18} elementary charges
1 electronvolt (eV)		$1.60 \times 10^{-19} \mathrm{J}$
Planck's constant	A	$6.63 \times 10^{-34} \text{ J} \cdot \text{s}$
1 universal mass unit (u)		$9.31 \times 10^2~\text{MeV}$

$$F_{\downarrow} = \frac{\epsilon q_1 q_2}{r^2}$$

$$E = \frac{F}{q}$$

$$=\frac{}{q}$$

$$I = \frac{\Delta q}{t}$$

$$=\frac{\rho L}{A}$$

$$P = I = I^2 = \frac{2}{--}$$

$$= Pt = It = I^2 t = \frac{2t}{2}$$

$$I = I_1 = I_2 = I_3 = \dots$$

$$= \quad 1 + \quad 2 + \quad 3 + \dots$$

$$_{\downarrow q} = _{1} + _{2} + _{3} + \dots$$

⊥ cell

_____ switch

—(A)— ammeter

✓✓✓ resistor

variable resistor

→® lamp

A = cross-sectional area

E = electric field strength

 F_{\cdot} = electrostatic force

I = current

€ = electrostatic constant

L =length of conductor

P = electrical power

q = charge

= resistance

 $_{\downarrow q}$ = equivalent resistance

r = distance between centers

t = time

= potential difference

= work (electrical energy)

 Δ = change

 ρ = resistivity

$$I = I_1 + I_2 + I_3 + \dots$$

$$=$$
 $_{1}$ $=$ $_{2}$ $=$ $_{3}$ $=$ \dots

$$\frac{1}{\frac{1}{4}g} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots$$

	20		
M .	$\mathbf{R} = \mathbf{q}^{\mathbf{v}} \cdot \mathbf{q} (\Omega \cdot \mathbf{m})$		
Aluminum	2.82×10^{-8}		
Copper	1.72×10^{-8}		
Gold	2.44×10^{-8}		
Nichrome	$150. \times 10^{-8}$		
Silver	1.59×10^{-8}		
Tungsten	5.60×10^{-8}		

$$= \int \int \lambda$$

$$T =$$

$$\theta_r = \theta_r$$

=

$$_1 \sin \theta_1 = _2 \sin \theta_2$$

$$E_{2,t} = 3f =$$

$$E_{2,t} = E_{1} - E_{1}$$

$$E = 4e^{2}$$

$$-=\frac{\dot{t}}{t}$$

$$a = \frac{\Delta}{t}$$

$$g = c + at$$

$$\dot{\tau} = it + \frac{1}{2}at^2$$

$$rac{1}{2} = rac{2}{4} + 2arac{1}{2}$$

$$A_{y} = A \sin \theta$$

$$A_r = A \cos \theta$$

$$a = \frac{F_{t}}{4}$$

$$F_{\P} = \mu F_N$$

$$F_g = \frac{G a_1 a_2}{r^2}$$

$$g = \frac{F_g}{Ia}$$

$$\mathbf{q}_{i}f_{i}r_{i} = \mathbf{q}_{i}f_{i}r_{i}$$

$$J = F_{\downarrow t} t = \Delta_{\blacksquare}$$

$$F = \epsilon x$$

$$PE = \frac{1}{2} \epsilon x^2$$

$$F_{\downarrow} = \mathbf{n}a_{\downarrow}$$

$$a = \frac{2}{r}$$

$$\Delta PE = ag\Delta \beta$$

$$KE = \frac{1}{2} a ^2$$

$$=F_{\bullet}^{*}=\Delta E_{T}$$

$$E_T = PE + KE + Q$$

$$P = \frac{F}{t} = \frac{F}{t} = F^-$$

a = acceleration

a =centripetal acceleration

A =any vector quantity

= displacement or distance

 E_T = total energy

F =force

 F_{\downarrow} = centripetal force

 F_{\P} = force of friction

 F_{σ} = weight or force due to gravity

 F_N = normal force

 F_{t} = net force

F =force on a spring

g = acceleration due to gravity or gravitational field strength

G = universal gravitational constant

a = height

J = impulse

← = spring constant

KE = kinetic energy

a = mass

= momentum

P = power

PE = potential energy

PE = potential energy stored in a spring

Q = internal energy

r = radius or distance between centers

t = time interval

= velocity or speed

= average velocity or average speed

= work

x = change in spring length from the equilibrium position

 Δ = change

 θ = angle

 μ = coefficient of friction